

Alkanes, Alkenes, Alkynes

Alkanes

- Single bonds between carbon atoms
- General formula: C_nH_(2n+2)
- The maximum amount of hydrogen atoms are bonded so alkanes are referred to as saturated

IUPAC name	Molecular Formula	Structural Formula	Boiling Point (°C)	Melting Point (°C)	Density (g/ml, 20°C)
Methane	CH ₄	CH ₄	-161.5	-182.5	
Ethane	C ₂ H ₆	CH ₃ CH ₃	-88.6	-183.3	
Propane	C ₃ H ₈	CH ₃ CH ₂ CH ₃	-42.1	-189.7	
Butane	C ₄ H ₁₀	CH ₃ (CH ₂) ₂ CH ₃	-0.5	-138.4	
Pentane	C ₅ H ₁₂	CH ₃ (CH ₂) ₃ CH ₃	36.1	-129.7	0.626
Hexane	C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃	68.7	-95.3	0.659
Heptane	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	98.4	-90.6	0.684
Octane	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	125.7	-56.8	0.703
Nonane	C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃	150.8	-53.5	0.718
Decane	C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃	174.1	-29.7	0.730

Simplified Structural Formulas

Methane	CH ₄	CH₄	CH₄
Ethane	CH ₃ -CH ₃	CH ₃ CH ₃	CH ₃ CH ₃
Propane	CH ₃ -CH ₂ -CH ₃	CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ CH ₃
Butane	CH ₃ -CH ₂ -CH ₂ -CH ₃	CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ (CH ₂) ₂ CH ₃
Petane	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	CH ₃ CH ₂ CH ₂ CH ₂ CH	CH ₃ (CH ₂) ₃ CH ₃

Substituent Groups

- A group, known as an alkyl group, may be bonded to a carbon instead of a hydrogen
- Some examples of substituent groups

Methyl: CH₃-Ethyl: CH₃-CH₂-

Naming Alkanes

- Find and name the longest continuous carbon chain
- Identify and name groups attached to this chain
- Number the chain consecutively, starting at the end nearest a substituent group
- Designate the location of each substituent by an appropriate number and name

- Assemble the name, listing groups in alphabetical order
 - The prefixes di, tri, tetra, etc., used to designate several groups of the same kind, are not considered when alphabetizing

Examples

2-methylpentane

2,2-dimethylhexane

4-ethyl-4-methyloctane

Alkenes

- Have a double bond between a pair of carbons
- General formula: C_nH_{2n}
- Considered unsaturated because the maximum amount of hydrogens are not bonded to carbons
- Simplest alkene contains two carbons
 - Ethene, CH₂=CH₂

Dehydrogenation

- Dehydrogenation is the removal of two hydrogen atoms from an organic molecule
- Thermal dehydrogenation of alkanes of fewer than six carbon atoms can be accomplished with metal oxide catalysts
- Location of the double bond(s) in open chain molecules is not easily controlled, and the product is usually a mixture of alkenes.

- Larger alkanes undergo thermal dehydrogenation with degradation
 - Breaking of larger chains into smaller ones

Hydrogenation

- Hydrogenation is the chemical reaction that results from the addition of hydrogen
- The process is usually employed to reduce or saturate organic compounds
- This process also uses catalysts like nickel, platinum or palladium

Naming Alkenes

- The ene suffix (ending) indicates an alkene
- The longest chain chosen for the root name must include both carbon atoms of the double bond
- The root chain must be numbered from the end nearest a double bond carbon atom
 - If the double bond is in the center of the chain, the nearest substituent rule is used to determine the end where numbering starts.

- The smaller of the two numbers designating the carbon atoms of the double bond is used as the double bond locator
 - If more than one double bond is present the compound is named as a diene, triene or equivalent prefix indicating the number of double bonds, and each double bond is assigned a locator number

Examples

but-1-ene

but-2-ene

3,3-dimethylbut-1-ene

4-methylpent-2-ene

Alkynes

- Have a triple bond between a pair of carbons
- General formula: C_nH_{2n-2}
- Considered unsaturated because the maximum amount of hydrogens are not bonded to carbons
- Simplest alkyne contains two carbons
 - Ethyne, CH≡CH

Naming Alkynes

- The yne suffix (ending) indicates an alkyne
- The longest chain chosen for the root name must include both carbon atoms of the triple bond.
- The root chain must be numbered from the end nearest a triple bond carbon atom
 - If the triple bond is in the center of the chain, the nearest substituent rule is used to determine the end where numbering starts.

- The smaller of the two numbers designating the carbon atoms of the triple bond is used as the triple bond locator
- If several multiple bonds are present, each must be assigned a locator number
 - Double bonds precede triple bonds in the IUPAC name, but the chain is numbered from the end nearest a multiple bond, regardless of its nature.

Examples

$$\label{eq:hamiltonian} H -\!\!\!-\!\!\!-\!\!\!-\!\!\!\!- C =\!\!\!\!-\!\!\!\!- C_2 H_5 \qquad \qquad \text{but-1-yne}$$

$$\mathsf{CH_3} \longleftarrow \mathsf{C} \Longrightarrow \mathsf{C} \longleftarrow \mathsf{CH(CH_3)_2} \qquad \text{ 4-methylpent-2-yne}$$